Dynamic Frame skip Deep Q Network

نویسندگان

  • Aravind S. Lakshminarayanan
  • Sahil Sharma
  • Balaraman Ravindran
چکیده

Deep Reinforcement Learning methods have achieved state of the art performance in learning control policies for the games in the Atari 2600 domain. One of the important parameters in the Arcade Learning Environment (ALE, [Bellemare et al., 2013]) is the frame skip rate. It decides the granularity at which agents can control game play. A frame skip value of k allows the agent to repeat a selected action k number of times. The current state of the art architectures like Deep Q-Network (DQN,[Mnih et al., 2015]) and Dueling Network Architectures (DuDQN, [Wang et al., 2016]) consist of a framework with a static frame skip rate, where the action output from the network is repeated for a fixed number of frames regardless of the current state. In this paper, we propose a new architecture, Dynamic Frame skip Deep QNetwork (DFDQN) which makes the frame skip rate a dynamic learnable parameter. This allows us to choose the number of times an action is to be repeated based on the current state. We show empirically that such a setting improves the performance on relatively harder games like Seaquest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frame Skip Is a Powerful Parameter for Learning to Play Atari

We show that setting a reasonable frame skip can be critical to the performance of agents learning to play Atari 2600 games. In all of the six games in our experiments, frame skip is a strong determinant of success. For two of these games, setting a large frame skip leads to state-of-the-art performance. The rate at which an agent interacts with its environment may be critical to its success. I...

متن کامل

Investigating the feature collection for semantic segmentation via single skip connection

Since the study of deep convolutional neural network became prevalent, one of the important discoveries is that a feature map from a convolutional network can be extracted before going into the fully connected layer and can be used as a saliency map for object detection. Furthermore, the model can use features from each different layer for accurate object detection: the features from different ...

متن کامل

Delayed Skip Connections for Music Content Driven Motion Generation

In this study, we employ skip connections into a deep recurrent neural network for modeling basic dance steps using audio as input. Our model consists of two blocks, one encodes the audio input sequences, and another generates the motion. The encoder uses a configuration called convolutional, long short-term memory deep neural network (CLDNN) which handle the power features of audio. Furthermor...

متن کامل

CS229 Final Report Deep Q-Learning to Play Mario

In this paper, I study applying applying and adjusting DeepMind’s Atari Deep Q-Learning model to train an automatic agent to play the 1985 Nintendo game Super Mario Bros. The agent learns control policies from raw pixel data using deep reinforcement learning. The model is a convolutional neural network that trained through only raw frames of the game and basic info such as score and motion.

متن کامل

MINMAX Optimal Video Summarization and Coding with Frame Skip Constraint

The need for video summarization originates primarily from a viewing time constraint. A shorter version of the original video sequence is desirable in a number of applications. Clearly, a shorter version is also necessary in applications where storage, communication bandwidth and/or power are limited. In this paper, our work is based on a MINMAX optimization formulation with viewing time, frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1605.05365  شماره 

صفحات  -

تاریخ انتشار 2016